Asymptotic Behavior of Ground State Radial Solutions for -Laplacian Problems
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of Ground State Solution for Hénon Type Systems
In this article, we investigate the asymptotic behavior of positive ground state solutions, as α→∞, for the following Hénon type system −∆u = 2p p+ q |x|αup−1vq , −∆v = 2q p+ q |x|αupvq−1, in B1(0) with zero boundary condition, where B1(0) ⊂ RN (N ≥ 3) is the unit ball centered at the origin, p, q > 1, p+ q < 2∗ = 2N/(N − 2). We show that both components of the ground solution pair (u, v) conce...
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملExistence and Asymptotic Behavior of Solutions for Weighted p(t)-Laplacian System Multipoint Boundary Value Problems in Half Line
متن کامل
Asymptotic Behavior of Positive Solutions of Some Quasilinear Elliptic Problems
We discuss the asymptotic behavior of positive solutions of the quasilinear elliptic problem −∆pu = au p−1 − b(x)u, u|∂Ω = 0 as q → p − 1 + 0 and as q → ∞ via a scale argument. Here ∆p is the p-Laplacian with 1 < p < ∞ and q > p−1. If p = 2, such problems arise in population dynamics. Our main results generalize the results for p = 2, but some technical difficulties arising from the nonlinear d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2013
ISSN: 2314-4629,2314-4785
DOI: 10.1155/2013/409329